[python]多线程快速入门

前言

线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。由于CPython的GIL限制,多线程实际为单线程,大多只用来处理IO密集型任务。

Python一般用标准库threading来进行多线程编程。

基本使用

  • 方式1,创建threading.Thread类的示例
import threading
import time
def task1(counter: int):
 print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
 num = counter
 while num > 0:
 time.sleep(3)
 num -= 1
 print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 # 创建三个线程
 t1 = threading.Thread(target=task1, args=(7,))
 t2 = threading.Thread(target=task1, args=(5,))
 t3 = threading.Thread(target=task1, args=(3,))
 # 启动线程
 t1.start()
 t2.start()
 t3.start()
 # join() 用于阻塞主线程, 等待子线程执行完毕
 t1.join()
 t2.join()
 t3.join()
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

执行输出示例

main thread: MainThread, start time: 2024-10-26 12:42:37
thread: Thread-1 (task1), args: 7, start time: 2024-10-26 12:42:37
thread: Thread-2 (task1), args: 5, start time: 2024-10-26 12:42:37
thread: Thread-3 (task1), args: 3, start time: 2024-10-26 12:42:37
thread: Thread-3 (task1), args: 3, end time: 2024-10-26 12:42:46
thread: Thread-2 (task1), args: 5, end time: 2024-10-26 12:42:52
thread: Thread-1 (task1), args: 7, end time: 2024-10-26 12:42:58
main thread: MainThread, end time: 2024-10-26 12:42:58
  • 方式2,继承threading.Thread类,重写run()__init__()方法
import threading
import time
class MyThread(threading.Thread):
 def __init__(self, counter: int):
 super().__init__()
 self.counter = counter
 def run(self):
 print(f"thread: {threading.current_thread().name}, args: {self.counter}, start time: {time.strftime('%F %T')}")
 num = self.counter
 while num > 0:
 time.sleep(3)
 num -= 1
 print(f"thread: {threading.current_thread().name}, args: {self.counter}, end time: {time.strftime('%F %T')}")
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 # 创建三个线程
 t1 = MyThread(7)
 t2 = MyThread(5)
 t3 = MyThread(3)
 # 启动线程
 t1.start()
 t2.start()
 t3.start()
 # join() 用于阻塞主线程, 等待子线程执行完毕
 t1.join()
 t2.join()
 t3.join()
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

继承threading.Thread类也可以写成这样,调用外部函数。

import threading
import time
def task1(counter: int):
 print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
 num = counter
 while num > 0:
 time.sleep(3)
 num -= 1
 print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
class MyThread(threading.Thread):
 def __init__(self, target, args: tuple):
 super().__init__()
 self.target = target
 self.args = args
 
 def run(self):
 self.target(*self.args)
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 # 创建三个线程
 t1 = MyThread(target=task1, args=(7,))
 t2 = MyThread(target=task1, args=(5,))
 t3 = MyThread(target=task1, args=(3,))
 # 启动线程
 t1.start()
 t2.start()
 t3.start()
 # join() 用于阻塞主线程, 等待子线程执行完毕
 t1.join()
 t2.join()
 t3.join()
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

多线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的后果,这时候就需要某些同步机制。比如如下代码,结果是随机的(个人电脑用python3.13实测结果都是0,而低版本的python3.6运行结果的确是随机的)

import threading
import time
num = 0
def task1(counter: int):
 print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
 global num
 for _ in range(100000000):
 num = num + counter
 num = num - counter
 print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 # 创建三个线程
 t1 = threading.Thread(target=task1, args=(7,))
 t2 = threading.Thread(target=task1, args=(5,))
 t3 = threading.Thread(target=task1, args=(3,))
 t4 = threading.Thread(target=task1, args=(6,))
 t5 = threading.Thread(target=task1, args=(8,))
 # 启动线程
 t1.start()
 t2.start()
 t3.start()
 t4.start()
 t5.start()
 # join() 用于阻塞主线程, 等待子线程执行完毕
 t1.join()
 t2.join()
 t3.join()
 t4.join()
 t5.join()
 
 print(f"num: {num}")
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

Lock-锁

使用互斥锁可以在一个线程访问数据时,拒绝其它线程访问,直到解锁。threading.Thread中的Lock()Rlock()可以提供锁功能。

import threading
import time
num = 0
mutex = threading.Lock()
def task1(counter: int):
 print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
 global num
 mutex.acquire()
 for _ in range(100000):
 num = num + counter
 num = num - counter
 mutex.release()
 print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 # 创建三个线程
 t1 = threading.Thread(target=task1, args=(7,))
 t2 = threading.Thread(target=task1, args=(5,))
 t3 = threading.Thread(target=task1, args=(3,))
 # 启动线程
 t1.start()
 t2.start()
 t3.start()
 # join() 用于阻塞主线程, 等待子线程执行完毕
 t1.join()
 t2.join()
 t3.join()
 
 print(f"num: {num}")
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

Semaphore-信号量

互斥锁是只允许一个线程访问共享数据,而信号量是同时允许一定数量的线程访问共享数据。比如银行有5个窗口,允许同时有5个人办理业务,后面的人只能等待,待柜台有空闲才可以进入。

import threading
import time
from random import randint
semaphore = threading.BoundedSemaphore(5)
def business(name: str):
 semaphore.acquire()
 print(f"{time.strftime('%F %T')} {name} is handling")
 time.sleep(randint(3, 10))
 print(f"{time.strftime('%F %T')} {name} is done")
 semaphore.release()
if __name__ == "__main__":
 print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
 threads = []
 for i in range(10):
 t = threading.Thread(target=business, args=(f"thread-{i}",))
 threads.append(t)
 for t in threads:
 t.start()
 for t in threads:
 t.join()
 
 print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")

执行输出

main thread: MainThread, start time: 2024-10-26 17:40:10
2024-10-26 17:40:10 thread-0 is handling
2024-10-26 17:40:10 thread-1 is handling
2024-10-26 17:40:10 thread-2 is handling
2024-10-26 17:40:10 thread-3 is handling
2024-10-26 17:40:10 thread-4 is handling
2024-10-26 17:40:15 thread-2 is done
2024-10-26 17:40:15 thread-5 is handling
2024-10-26 17:40:16 thread-0 is done
2024-10-26 17:40:16 thread-6 is handling
2024-10-26 17:40:19 thread-3 is done
2024-10-26 17:40:19 thread-4 is done
2024-10-26 17:40:19 thread-7 is handling
2024-10-26 17:40:19 thread-8 is handling
2024-10-26 17:40:20 thread-1 is done
2024-10-26 17:40:20 thread-9 is handling
2024-10-26 17:40:21 thread-6 is done
2024-10-26 17:40:23 thread-7 is done
2024-10-26 17:40:24 thread-5 is done
2024-10-26 17:40:24 thread-8 is done
2024-10-26 17:40:30 thread-9 is done
main thread: MainThread, end time: 2024-10-26 17:40:30

Condition-条件对象

Condition对象能让一个线程A停下来,等待其他线程,其他线程通知后线程A继续运行。

import threading
import time
import random
class Employee(threading.Thread):
 def __init__(self, username: str, cond: threading.Condition):
 self.username = username
 self.cond = cond
 super().__init__()
 def run(self):
 with self.cond:
 print(f"{time.strftime('%F %T')} {self.username} 到达公司")
 self.cond.wait() # 等待通知
 print(f"{time.strftime('%F %T')} {self.username} 开始工作")
 time.sleep(random.randint(1, 5))
 print(f"{time.strftime('%F %T')} {self.username} 工作完成")
class Boss(threading.Thread):
 def __init__(self, username: str, cond: threading.Condition):
 self.username = username
 self.cond = cond
 super().__init__()
 def run(self):
 with self.cond:
 print(f"{time.strftime('%F %T')} {self.username} 发出通知")
 self.cond.notify_all() # 通知所有线程
 time.sleep(2)
if __name__ == "__main__":
 cond = threading.Condition()
 boss = Boss("老王", cond)
 
 employees = []
 for i in range(5):
 employees.append(Employee(f"员工{i}", cond))
 for employee in employees:
 employee.start()
 boss.start()
 boss.join()
 for employee in employees:
 employee.join()

执行输出

2024-10-26 21:16:20 员工0 到达公司
2024-10-26 21:16:20 员工1 到达公司
2024-10-26 21:16:20 员工2 到达公司
2024-10-26 21:16:20 员工3 到达公司
2024-10-26 21:16:20 员工4 到达公司
2024-10-26 21:16:20 老王 发出通知
2024-10-26 21:16:20 员工4 开始工作
2024-10-26 21:16:23 员工4 工作完成
2024-10-26 21:16:23 员工1 开始工作
2024-10-26 21:16:28 员工1 工作完成
2024-10-26 21:16:28 员工2 开始工作
2024-10-26 21:16:30 员工2 工作完成
2024-10-26 21:16:30 员工0 开始工作
2024-10-26 21:16:31 员工0 工作完成
2024-10-26 21:16:31 员工3 开始工作
2024-10-26 21:16:32 员工3 工作完成

Event-事件

在 Python 的 threading 模块中,Event 是一个线程同步原语,用于在多个线程之间进行简单的通信。Event 对象维护一个内部标志,线程可以使用 wait() 方法阻塞,直到另一个线程调用 set() 方法将标志设置为 True。一旦标志被设置为 True,所有等待的线程将被唤醒并继续执行。

Event 的主要方法

  1. set():将事件的内部标志设置为 True,并唤醒所有等待的线程。
  2. clear():将事件的内部标志设置为 False
  3. is_set():返回事件的内部标志是否为 True
  4. wait(timeout=None):如果事件的内部标志为 False,则阻塞当前线程,直到标志被设置为 True 或超时(如果指定了 timeout)。
import threading
import time
import random
class Employee(threading.Thread):
 def __init__(self, username: str, cond: threading.Event):
 self.username = username
 self.cond = cond
 super().__init__()
 def run(self):
 print(f"{time.strftime('%F %T')} {self.username} 到达公司")
 self.cond.wait() # 等待事件标志为True
 print(f"{time.strftime('%F %T')} {self.username} 开始工作")
 time.sleep(random.randint(1, 5))
 print(f"{time.strftime('%F %T')} {self.username} 工作完成")
class Boss(threading.Thread):
 def __init__(self, username: str, cond: threading.Event):
 self.username = username
 self.cond = cond
 super().__init__()
 def run(self):
 print(f"{time.strftime('%F %T')} {self.username} 发出通知")
 self.cond.set()
if __name__ == "__main__":
 cond = threading.Event()
 boss = Boss("老王", cond)
 
 employees = []
 for i in range(5):
 employees.append(Employee(f"员工{i}", cond))
 for employee in employees:
 employee.start()
 boss.start()
 boss.join()
 for employee in employees:
 employee.join()

执行输出

2024-10-26 21:22:28 员工0 到达公司
2024-10-26 21:22:28 员工1 到达公司
2024-10-26 21:22:28 员工2 到达公司
2024-10-26 21:22:28 员工3 到达公司
2024-10-26 21:22:28 员工4 到达公司
2024-10-26 21:22:28 老王 发出通知
2024-10-26 21:22:28 员工0 开始工作
2024-10-26 21:22:28 员工1 开始工作
2024-10-26 21:22:28 员工3 开始工作
2024-10-26 21:22:28 员工4 开始工作
2024-10-26 21:22:28 员工2 开始工作
2024-10-26 21:22:30 员工3 工作完成
2024-10-26 21:22:31 员工4 工作完成
2024-10-26 21:22:31 员工2 工作完成
2024-10-26 21:22:32 员工0 工作完成
2024-10-26 21:22:32 员工1 工作完成

使用队列

Python的queue模块提供同步、线程安全的队列类。以下示例为使用queue实现的生产消费者模型

import threading
import time
import random
import queue
class Producer(threading.Thread):
 """多线程生产者类."""
 def __init__(
 self, tname: str, channel: queue.Queue, done: threading.Event
 ):
 self.tname = tname
 self.channel = channel
 self.done = done
 super().__init__()
 def run(self) -> None:
 """Method representing the thread's activity."""
 while True:
 if self.done.is_set():
 print(
 f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"
 )
 break
 if self.channel.full():
 print(
 f"{time.strftime('%F %T')} {self.tname} report: 队列已满, 全部停止生产"
 )
 self.done.set()
 else:
 num = random.randint(100, 1000)
 self.channel.put(f"{self.tname}-{num}")
 print(
 f"{time.strftime('%F %T')} {self.tname} 生成数据 {num}, queue size: {self.channel.qsize()}"
 )
 time.sleep(random.randint(1, 5))
class Consumer(threading.Thread):
 """多线程消费者类."""
 def __init__(
 self, tname: str, channel: queue.Queue, done: threading.Event
 ):
 self.tname = tname
 self.channel = channel
 self.done = done
 self.counter = 0
 super().__init__()
 def run(self) -> None:
 """Method representing the thread's activity."""
 while True:
 if self.done.is_set():
 print(
 f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"
 )
 break
 if self.counter >= 3:
 print(
 f"{time.strftime('%F %T')} {self.tname} report: 全部停止消费"
 )
 self.done.set()
 continue
 if self.channel.empty():
 print(
 f"{time.strftime('%F %T')} {self.tname} report: 队列为空, counter: {self.counter}"
 )
 self.counter += 1
 time.sleep(1)
 continue
 else:
 data = self.channel.get()
 print(
 f"{time.strftime('%F %T')} {self.tname} 消费数据 {data}, queue size: {self.channel.qsize()}"
 )
 time.sleep(random.randint(1, 5))
 self.counter = 0
if __name__ == "__main__":
 done_p = threading.Event()
 done_c = threading.Event()
 channel = queue.Queue(30)
 threads_producer = []
 threads_consumer = []
 for i in range(8):
 threads_producer.append(Producer(f"producer-{i}", channel, done_p))
 for i in range(6):
 threads_consumer.append(Consumer(f"consumer-{i}", channel, done_c))
 for t in threads_producer:
 t.start()
 for t in threads_consumer:
 t.start()
 for t in threads_producer:
 t.join()
 for t in threads_consumer:
 t.join()

线程池

在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或其他更多资源。在多线程程序中,生成一个新线程之后销毁,然后再创建一个,这种方式就很低效。池化多线程,也就是线程池就为此而生。

将任务添加到线程池中,线程池会自动指定一个空闲的线程去执行任务,当超过最大线程数时,任务需要等待有新的空闲线程才会被执行。Python一般可以使用multiprocessing模块中的Pool来创建线程池。

import time
from multiprocessing.dummy import Pool as ThreadPool
def foo(n):
 time.sleep(2)
if __name__ == "__main__":
 start = time.time()
 for n in range(5):
 foo(n)
 print("single thread time: ", time.time() - start)
 start = time.time()
 t_pool = ThreadPool(processes=5) # 创建线程池, 指定池中的线程数为5(默认为CPU数)
 rst = t_pool.map(foo, range(5)) # 使用map为每个元素应用到foo函数
 t_pool.close() # 阻止任何新的任务提交到线程池
 t_pool.join() # 等待所有已提交的任务完成
 print("thread pool time: ", time.time() - start)

线程池执行器

python的内置模块concurrent.futures提供了ThreadPoolExecutor类。这个类结合了线程和队列的优势,可以用来平行执行任务。

import time
from random import randint
from concurrent.futures import ThreadPoolExecutor
def foo() -> None:
 time.sleep(2)
 return randint(1,100)
if __name__ == "__main__":
 start = time.time()
 futures = []
 with ThreadPoolExecutor(max_workers=5) as executor:
 for n in range(10):
 futures.append(executor.submit(foo)) # Fan out
 
 for future in futures: # Fan in
 print(future.result())
 print("thread pool executor time: ", time.time() - start)

执行输出

44
19
86
48
35
74
59
99
58
53
thread pool executor time: 4.001955032348633

ThreadPoolExecutor类的最大优点在于:如果调用者通过submit方法把某项任务交给它执行,那么会获得一个与该任务相对应的Future实例,当调用者在这个实例上通过result方法获取执行结果时,ThreadPoolExecutor会把它在执行任务的过程中所遇到的异常自动抛给调用者。而ThreadPoolExecutor类的缺点是IO并行能力不高,即便把max_worker设为100,也无法高效处理任务。更高需求的IO任务可以考虑换异步协程方案。

参考

  • 郑征《Python自动化运维快速入门》清华大学出版社
  • Brett Slatkin《Effective Python》(2nd) 机械工业出版社
作者:花酒锄作田原文地址:https://www.cnblogs.com/XY-Heruo/p/18514316

%s 个评论

要回复文章请先登录注册